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ABSTRACT
An Analytical Approach To Grid Sensitivity
Analysis For NACA Four-Digit Wing Sections

Ideen Sadrehaghighi*

Surendra N. Tiwari!

Sensitivity analysis in Computational Fluid Dynamics with emphasis on gricis and
surface parameterization is described. An interactive algebraic grid-generation tech-
nique is employed to generate C-type grids around NACA four-digit wing sections.
An analytical procedure is developed for calculating grid sensitivity with respect to
design parameters of a wing section. A comparison of the sensitivity with that ob-
tained using a finite-difference approach is made. Grid sensitivity with respect to
grid parameters, such as grid-stretching coefficients, are also investigated. Using the
resultant grid sensitivity, aerodynamic sensitivity is obtained using the compressible
two-dimensional thin-layer Navier-Stokes equations.

*Graduate Research Assistant
"Eminent Professor
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Xt

NOMENCLATURE

vector of fleld variables

vector of physical coordinates
steady-state residual

vector of control parameters

vector of design parameters

horizontal interpolant

normal interpolant

physical coordinates

airfoil surface coordinates

surface grid distribution function
far-field boundary grid distribution function
grid stretching function

surface orthogonality function

far-field boundary orthogonality function
orthogonality parameters

stretching parameter

maximum thickness parameter
maximum camber parameter

camber location parameter

pressure coeflicient

drag coefhicient,

VIl



lift coefficient

skin friction coefficient

force coefficients in r and y directions
camber line coordinates

section thickness distribution

surface pressure

velocity components in z , y and z directions
density

energy per unit volume

free-stream Mach number

free-stream density

free-stream velocity

free-stream Reynolds number
computational coordinates

horizontal blending function

normal blending function

surface slope

angle of attack

surface skin friction

vill




1. INTRODUCTION

Over the past several years, Computational Fluid Dynamics (CFD) has
rapidly evolved. This has been the result of the immense advances in computational
algorithms 1] and the development of supercomputers. These innovations have had a
major impact on obtaining numerical flow simulations about complex geometries. On
current supercomputers, viscous-compressible flow simulations about aircraft config-
uration can require several hours per steady-state solution [2]. Such large amounts
of computational time are acceptable for proof-of-concept studies and selective anal-
ysis, but they are not acceptable for optimization and design. With advent of the
next generation of parallel supercomputers (3], airplane design and optimization using
nonlinear CFD (Euler and Navier-Stokes equations) should become routine. For an
individual component, such as a wing, it is now reasonable to consider design and
optimization in conjunction with nonlinear CFD [4].

An essential element in design and optimization is acquiring the sensitivity
of functions of CFD solutions with respect to control parameters. For aerodynamic
surfaces, the control parameters specify the shapes of the surfaces. This affects the
surface grid and the field grid which, in turn, affects the flow- field solution. There are
two basic components in obtaining aerodynamic sensitivity. They are: (1) obtaining
the sensitivity of the governing equations with respect to the state variables; and (2)
obtaining the sensitivity of the grid with respect to the defining parameters. The
sensitivity of the state variables with respect to the defining parameters are described
by a linear-algebraic relation [5]. This study concentrates on the grid sensitivity and

parameterization of aerodynamic surfaces.



The simplest method for calculating grid sensitivity is based upon finite-
difference approximation. In this approach, a design parameter is perturbed from
the nominal value, a new grid is obtained, and the difference between the new and
the old grid is used to obtain the grid sensitivity derivatives. This direct, or brute
force technique, has the disadvantages of being computationally intensive. It is the
objective of the analytical approach to avoid the time consuming and costly numerical
differentiation. In addition, the analytic derivatives are exact instead of approximate.

Taylor et al. [6] set the stage for the development of the technique used in
this study. For a steady-state solution of the Euler or Navier-Stokes equations, the
sensitivity of a function of the solution with respect to the control parameters is to
be found. The problem includes the determination of sensitivity of the grid with
respect to control parameters. For grid generation, algebraic transfinite interpolation
[7] is ideally suited for the study of parameterization. Parameters are sub-grouped
according to their purposes (grid spacing control and surface shape control). The
objective is to cast the surface parameterization in terms of design parameters rather
than geometric variables. Geometric parameterization has only local control and
consequently requires large number of parameters to define a grid. A specialized ap-
plication of transfinite interpolation [8] is cast in terms of design parameters for a

class of wing sections and wings. The grid sensitivity of this system is discussed.



2. ALGEBRAIC GRID GENERATION

2.1 Basic Formulation

Structured algebraic grid generation techniques can be thought of as trans-
formations from a rectangular computational domain to an arbitrarily-shaped physi-
7

cal domain [7]. The transformations are governed by the vector of control parameters

P. That is,

X(6.7.0.P) = { 2(6.7.C,P) y(€.n.C.P) (6., P) } (2.1)

where

0<E<1 0<n<l, and 0 <1,

A discrete subset of the vector-valued function X(&,7;,(x,P) =X {zy 2 }Zy,k =X
1s a structured grid for &; = ﬁﬂ?j = ﬁ,(k = k—“_ll, where : = 1,2,3--- L, j =
,2,3,---,M and £k =1,2,3,---, N.

The dominant algebraic approach for grid generation is the Transfinite In-
terpolation scheme. The general methodology was first described by Gordon [9] , and
there have been numerous variations applied to particular problems. The methodol-
ogy can be presented as recursive formulas composed of univariate interpolations [10]
or as the Boolean sum of univariate interpolations [7]. Here, we follow the Boolean
sum representation but; for brevity, we restrict the process to two dimensions and

omit some of the details that can be found in Ref. [7]. Also, to be consistent with

the example considered below, the parameterization is restricted to functions and first

3



derivatives at the boundaries (¢ = 0,1) and ( = 0,1) and control in the interpolation

functions. The transformation is

X&nP)=UsV=U+V-UV (2.2)
where
2 d "X, P
SEDI IR HERS (23)
I=1n=0
and
21 omX , ,PE
V=YY arenpp IR Py) (2.4
J=1m=0 677

The term UV (not expanded here) is the tenser product of the two univariate interpo-

n n m §
lations. The boundary curves and their derivatives (a X(g:’;‘n.Pl) and 2 xgi?,,J'PJ)I, J =

1,2 m,n = 0,1) are blended into the interior of the physical domain by the in-
terpolation functions a;(€,P§) and 8,(n,P!). The boundary grid, the derivatives
at the boundary grid and the spacing between points are governed by the param-
eters {PS P?}T. The interpolation functions are controlled with the parameters
{Pg Pg}T. The entire set of control parameters can be thought of as a vector

[P§ P} P§ P}} =P.

2.2 Grid Algorithm

An interactive univariate version of Eq.(2.2) using only the normal interpolant V is
developed. This, known as Hermite Cubic Interpolation, matches both the function
and its first derivative at two boundaries. An analytical approximation of the physical

coordinates for a class of wing sections can be expressed as



Oy, (r. P})

v = u(r PO PY) + R(r)==—=—51(t, P})
+ ya(s. P§)33(¢, PY) + S(s)gy“%@:ﬁ(t,Pz) (2.6)

where

3t Pl) =263 — 3¢ + 1,

B3l (¢, Pg) =3 — 2% + ¢,

(¢, P2) = =263 + 32,

B,(t,Pg) = t° —

and

0<t<l.

Five functions r = fi(€), s = f(€), R(r) = K1 fs(€). S(s) = Kafa(€) and
t = fs(n) and their implied defining parameters control the grid spacing on the bound-
aries and the interior grid. Functions r and s define the grid spacing for lower and
upper boundaries respectively, while R(r) and S(s) specify the magnitude of orthog-
onality along those boundaries. The parameter ¢ defines the grid distribution for the
connecting curves between the two boundary. The quantities K, and K, are param-
eters that scale the magnitude of the orthogonality at the boundaries. Increasing K;
and K, extends the orthogonality of the grid into the interior domain. Excessively
large values of K; and K, can also cause the grid lines to intersect themselves, which
is not a desirable phenomena.

A discrete uniform distribution of the computational coordinate, can be
mapped into an arbitrary distribution of the physical coordinate, using the specified
control function. The essence of mapping, is that the abscissa corresponds to the per-
centage of grid points and the ordinate corresponds to a particular control function
which, in turn, relates to the geometric definition of the physical domain. The control

function, can be either a specified analytical function, or for more general purposes,
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a cubic- spline function. For example, the function

fs(n) = K1 (2.7)
would concentrate grid points close to the bottom or the top boundary depending on
the magnitude and the sign of the constant K. Figure 2.1 shows a unit square used as
a control domain for grid spacing. Figure 2.2 presents the parametric representation
of the boundaries and the cubic connecting function of Eqs.(2.5) and (2.6). Appendix
A provides a complete listing of the FORTRAN source module for this type of grid

generation algorithm.

(0,1) (1,1}

Top boundarv

Control function
Connecting function

Control variable

Bottom boundary

A

(0,0) (1,0} /f r(g) e

Computational coordinate o

Fig. 2.1 Unit square control domain Fig. 2.2 Cubic connecting function



3. PROBLEM STATEMENT AND METHOD
OF SOLUTION

3.1 Theoretical Formulation

et Q be a solution of the Euler or Navier-Stokes equations on the domain X and

Q" be a discrete solution on the grid X* where

Q= { p pu pv pw pe }:'k X* ={ T Yy =z }i.j.k (3.1)

and

%—? = R(Q"(X"),X") = 0. ‘ (3.2)
Here, R(Q"(X"), X") is the residual of a steady-state solution as ¢ — oc. Let P be a
vector of parameters that controls the grid X* such that X* = X(&,n5, ¢k, P) where

§,n and ¢ are computational coordinates [7]. The numerical sensitivity of a function

F(Q(X)) with respect to the control parameters is

R ) - {2 {20 (O e

The fundamental sensitivity equation containing {@-(;—g—(—‘l} and described by Taylor
et al. [6] is
OR(Q'(X"). X)] [0Q:(X)| | [ORQ(XDX] (X} o o
0Q*(X~) oP X~ oP ' -

It is important to notice that Eq.(3.4) is a set of linear, algebraic equations

, and the matrices [QB—E%—(?(TJ)LI] and [M%&x,—‘m] are well understood [6]. The




09}

quantitiy {8—9%3—(3 is the solution to Eq.(3.4) given the sensitivity of the grid with

respect to the parameters. Therefore, the grid sensitivity problem is described by

X-
{%? = GridSensitivity} .

3.2 Surface Parameterization

In Eq.(2.2), the parameterization is on the boundaries and in the interpo-
lation functions. The most general parameterization of the boundaries would be to
specify every grid point X7 ; (i.e., each boundary grid point is a parameter). This
conceivably could be desirable for the boundaries corresponding to an airplane surface
to allow a design procedure to have the greatest possible flexibility. This, however,
is impractical from a computational point of view. A compromise is to specify the
knots of a spline function or the control polygon for a Bézier function. Even with this
compromise, it could require hundreds of parameters for a wing. Here we propose a
quasi-analytical parameterization in terms of design variables. For instance, a class of
wing sections is specified by two camber-line parameters and a thickness distribution
parameter; a wing is specified by several wing sections; and the wing surface is inter-
polated from the sections. In this manner, an airplane component can be specified
by tens of parameters instead of hundreds or .housands of parameters. The disad-
vantage is that a great deal of generality is not available, but the generality is a moot
point if computational capacity cannot accommodate it. For design and optimization
with CFD, at the present time, it is advocated here to use a small number of design

parameters for boundary definition.

3.3 Grid Sensitivity

As it is stated in the introduction, the simplest way to obtain grid sensitivity

with respect to the parameterization is to vary the parameters and finite difference the



results. This is computationally expensive compared to analytically differentiating
Eq.(2.2). Therefore, we propose the latter. Grid sensitivity can be used for grid
adaptation, or it can be used for boundary design. For adaptation, the grid sensitivity
with respect to those parameters that control the grid spacing and the shape of the
field grid away from fixed boundaries are desired. The sensitivity is used to improve
some grid-quality function of the solution. For design and optimization the sensitivity
of the grid with respect to the parameters that define the shape of a boundary is

desired. The sensitivity is used to improve a design function of the solution.



4. WING-SECTION EXAMPLE

4.1 Wing-Section Parameterization

Much research has been devoted to the development and representation of
wing sections. The NACA four-digit wing sections are examined for grid-generation
parameterization. Families of wing sections are described by combining a mean line
and a thickness distribution. The resultant expressions possess the necessary features
that suit the problem, mainly the concise description of a wing section in terms of
several design parameters. Reference 11 provides the general equations which define
a mean line and a thickness distribution about the mean line. The design param-
eters are: T = the maximum thickness, M = the maximum ordinate of the mean
line or camber, and C = chordwise position of maximum ordinate. The numbering
system for NACA four-digit wing-section is based on the geometry of the section.
The first and second integers represent M and C respectively, while the third and
fourth integers represent T. Symmetrical sections are designated by zeros for the
first two integers, as in the case of NACA 0012 wing-section. Figure 4.1 provides a
schematic of the section definition. The £-coordinate is first mapped into the chord
line z = z(r) = z(f1(¢)) forward and then reversed to cover both the top and bottom

of the section. The mean line equation is

(7) = 55(2CE ~ ), £<C (4.1)

z>C. (4.2)

1 -2C +2Cz - 7?)
(1-C)? ’

10



11
The section thickness is given by

T
yT(F) = ﬁ(0.29695& —0.126% — 0.35162° + 0.2843z° — 0.1015z*). (1.3)

The section coordinates are
n(r,P) =1 yi(r, PY) = e(2) £ y1(2). (1.4)

Figures 4.2 and 4.3 show sample grids for NACA 0012 and NACA 8512
scction using this procedure. The orthogonality at the far-field boundary is ignored.
For solid boundary, the orthognality is obtained using the components of unit normal

vector at the surface

oz (r, PEI)
ot

Ay (r, PY)

= Fsinb 51

13
= +cosf 0 =tan"! (—3y1(r, P:)
1

Az, (r, P )) '
(4.5)

Figure 4.4 shows a wing-surface grid derived from three differently-specified
sections in the spanwise direction. The surface grid results from the distribution
function f1(€), and interpolation of the design parameters for the three wing sections
in the spanwise direction. In addition to the three esign parameters for each wing
section, it is necessary to specify their relative chord lengths and positions. The
additional design parameters can be: leading edge sweep, trailing edge sweep, dihedral

angle, reference chord length, and section-span locations.

Leading edge

Thickness

Chord IHX\ZS

Mean camber line

_& Cimgc: r

| I
Chord ¢ _! \ Trailing

edgc

]

Fig. 4.1 Schematic of wing-section
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Fig. 4.4 Example wing surface grid (top view)

Appendix B provides the source module for generating the surface of NACA four-digit

wing-sections.

4.2 Grid Sensitivity With Respect To Control
Parameters

There are two types of control parameters involved in this analysis. First, there
are the design parameters (T, M, and C) which specify the shape of the primary
boundary and secondly, there are the parameters that define the other boundaries
and the the spacing between grid points. Here we express, in part, the sensitivity of
the grid with respect to the design paramecter vector Xp, and with k a stretching
parameter in the interpolation functions related by fs(n, k). The grid sensitivity
with respect tc design parameters at the outer boundary has been ignored. Also, due
to zero orthogonality at the outer boundary, a direct differentiation of Eqs.(2.5) and

(2.6) with respect to Xp yields to

dr Oz Jxy(r, P}) Oz oz (r, PY)
0Xp OJr, 0Xp oz, 0Xp

(4.6)
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Oy __ Oy 9y (r.PY) | y dy(r,PY)

0Xp oy, 9Xp | 0y 9Xp (17)
where
Xp = (T,M, C) (1.8)
QI_. — @ — 30 n Oz _ ay - 1 n
o 3, (t, Pg) B2l = Byl R(r)3,(t, Pg). (1.9)

The prime indicates differentiation with respect to ¢ and can be substituded from
Eq.(4.5). Since z(r, P‘i) is independent of design parameters Xp, then

Ox,(r, PEI)

= 0.0. 1.
7Xp 0 (1.10)
The z coordinate sensitivity, Eq.(4.6), can now be reduced to
dz 9(Fsinb) § (ayl(r Pf))
= R(r)B}(t,P})———t 0 =tan™' | —212 ). 1.11
5xp ~ AP z1(r. P )
Using the relation
1 du
tan"'u = —— 1.12
8Xp T T+ uwaXp (1.12)
the z coordinate sensitivity becomes
9 1 9 P4
" = FR(r)B)(t, P})cost - Oy (r, 2). (1.13)
aXD 1+ 8y1(r,PE]) axD 8.’131(7', Pl)
3z1(r.P{)
T' 6 . . . .
The term _p _ulnPy) can be evaluated by direct differentiation of Eq.(4.4). The y

a)(]) 23 (r,Pi)

coordinate sensitivity with respect to design papameters can be obtained using similar

procedure. Equation (4.7) can be modified to

13 1 ¢
9y _ 32, P 2P - o gt B2 sing 9 duln P;).
BXD aXD 1 + (Zyl Er,llzzl ;) aXD 3:1?1(7‘, Pl)
rlr, 1

(1.14)
All terms at the right hand side of Eqs.(4.13 ) and (4.14 ) can be evaluated explicitly
due to analytical parameterization of the surface for this particular example. The

grid sensitivity with respect to the stretching parameter k are

dr ¢, 082(t, P2 Ot dz,(r, P$) 88L(t, P]) ot
ok~ 1 PD=5—3F + £(") on ot ok



932(t, Pg) ot Ozq(s, P§) 98} (t. P) ot

. P§ _ + S(s _ 15
ol P =gk T 50—, ot ok (1.15)
where
83?(LP8) d3i(t, Py)
— 2 =6t~ 6t — 9 32 4t 4]
ot ot *
939(t, P]) 2 033(t, Pg) 2
—_— = t —_— = — 1.
T 6t°+6 T 3¢ 1
An example of the stretching function is
ekn _ 1
t = 4.16
ek — 1 ( )
t 1-( - 1 ETI —_ l—cn —_ 1 l_(
ot _ (e = gefr — (cFr — 1)k o

ok (ek —1)2

Similar developments can be extended to other grid control parameters such
as the distribution of grid point around the wing section and magnitude of orthogo-
nality at the boundaries. Appendix C provides the source module for grid sensitivity

of NACA four-digit wing-sections with respect to design parameters.

4.3 Flow Sensitivity With Respect To Control
Parameters

The flow sensitivity coefficient {%x—.l can now be evaluated using the

fundamental sensitivity equation, Eq.(3.4). The Jacobian matrices [QB—(E)QQ—((XT%J

and |2& 3)? X J are obtained using an implicit time integration of the 2-D thin-
layer Navier-Stokes equations [10]. These equations are solved in their conservation
form using an upwind cell-centered finite-volume formulation. A detailed description

of the procedure is found in Refs. [12-17] and is not repeated here. A third-order

accurate upwind biased inviscid flux balance is used in both streamwise and normal
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directions. The finite-volume equivalent of second-order accurate central differences is
used for viscous terms. For a typical design analysis of an airfoil, the flow sensitivity
coeflicient {C—’(—)‘;g(—l} provides far more information than needed. In most cases, the
sensitivity of aerodynamic forces on the surface, such as lift and drag coefficients,
are sought. For such analysis, only a small subset of the flow sensitivity coefficient
{3—0{—1} (i.e. surface properties) is needed since the lift and drag coefficients can

be expressed as

Cr = Cycosa — Cxsina (4.18)
Cp = Cysina + Cxcosa (4.19)

where a i1s the flow angle of atack. The quantities Cx and Cy are the total force

coeflicents along = and y directions respectively and can be expressed as

NE

Cx = 3 Colyins — 4i) + Cp(ia — :) (4.20)
NE

Cy = ) Cplziy1 — 2:) + Cp, (yir1 — ¥i) (4.21)

=1

where C,; and (', are pressure and skin friction coefficients respectively

T

1 72 ' 1 2
2:000(‘00 QPOOUOO

and NV E represents total number of bondary cells along airfoil surface. The terms P,
and T; are pressure and shear stress associated with boundary cell 7 and the quantity
%pooUgo is known as dynamic pressure of the free stream . Finally, the drag and lift
sensitivity coeflicients with respect to Xp are obtained by differentiating Eqs.(4.18)

and (4.19) as

0C, _ 9Cy cosa — 0Cx sina (4.23)
dXp ~ 9Xp 0Xp -
oCy = &cosa - OCx sina. (4.24)

0Xp  9Xp 9Xp



5. RESULTS AND DISCUSSION

5.1 NACA 0012 Airfoil Test Case

5.1.1 Grid Sensitivity

The first test case considered is the NACA 0012 symmetrical airfoil. The
previously obtained grid, as shown in Fig. 4.2, is considered for grid sensitivity anal-
ysis. The grid sensitivity with respect to the vector of design parameters Xp. are
obtained using Eqgs. (4.13) and (4.14). The maximum thickness T is the only design
parameter for this case.

Figure 5.1 shows the contour levels of the y-coordinate sensitivity with re-
spect to the thickness parameter, T. The highest contour levels are, understandably,
located in the vicinity of the chordwise location for the maximum thickness of the
wing section. For a NACA four-digit wing section, this is positioned about 0.3 of
the chord length from the leading edge [11]. The positive and negative contour levels
corresponding to the upper and lower surfaces are the direct consequence of Eq.(4.4)
and the second term on the right hand side of Eq.(4.7). The sensitivity levels decrease
when approaching the far-field boundary due to diminishing effects of the interpola-
tion function 37(t, Pg). The first term on the right hand side of Eq.(4.7) is responsible
for the sensitivity effects due to orthogonality on the surface, and it is directly pro-
portional to the magnitude of the orthogonality vector K,. The wake region is not
sufficiently affected by any of the design parameters, and no major sensitivity gradi-

ent should be expected there.

17
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Figure 5.2 demonstrates the contour levels of the x-coordinate sensitivity
with respect to thickness parameter, T. An interesting observation can be made here
regarding the contour levels adjacent to the surface. Unlike the y-coordinate sensitiv-
ity, the x-coordinate sensitivity has its lowest value on the surface. This can be traced
back to Eq.(4.4), which indicates that x-coordinates on the surface are basically inde-
pendent of the design parameters. The only remaining factor is the second term on
the right hand side of Eq.(4.6) which is the effect of the surface orthogonality vector.
There are some negative pockets of contour levels on the forward section and some
corresponding positive pockets on the rear section. The dividing line between these
pockets is located near the location of the maximum thickness (i.e., 0.3 of chord from
leading edge). A simple conclusion from Fig. 5.2 is that by increasing the thickness
parameter, T points on the forward section will move to the left, while at the same
time, points at rear section will move to the right.

For comparison purposes, the grid sensitivity for this case is obtained using
the finite difference approach. The design parameter(i.e. T for this case) are per-
turbed, one at a time, and a new grid is obtained using Egs.( 2.5) and (2.6). The
sensitivity is then computed using a central difference approximation and the results
are presented in Figs. 5.3 and 5.4 . A side by side comparison of both results indicates

good agreement between the two approaches.

5.1.2 Flow Sensitivity

The second phase of the problem is obtaining the flow sensitivity coefficients
using the previously obtained grid sensitivity coefficients. In order to achieve this,
according to Eq. (3.4), a converged flow field solution about a fixed design point
should be obtained. The computation is performed on a C-type grid composed of 141
points in the streamwise direction and 31 points in the normal direction. It is appar-

ent that such a coarse grid is inadequate for capturing the full physics of the viscous
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flow over an airfoil. Therefore, it should be understood that the main objective here
is not to produce a highly accurate flow field solution rather than to demonstrate the
feasibility of the approach.

A free stream Mach number of M, = 0.8, Reynolds number Re., = 108,
and angle of attack a = 0° is used. Figures 5.5 and 5.6 demonstrate the pressure and
Mach number contours of the converged solution. Figure 5.7 shows the surface pres-
sure coefficient C,, where the lift and drag coefficient for this particular example are
Cr = 1.53x1078,Cp = 4.82x107%. The sensitivities of the aerodynamic forces, such
as drag and lift coefficients with respect to thickness parameter T, are obtained uti-
lizing Eqs.(4.18-4.24). The corresponding results are presented in Table 5.1. Aéain.
for comparison purposes, a finite difference approximation has been implemented to
validate the results. A nominal perturbation of 10~ for design parameter T has been
chosen and the corresponding results are included in Table 5.1. The good agreement
between the two sets of numbers verifies the accuracy of the approach.

Another important goal of using sensitivity analysis, apart from optimiza-
tion, is the approximation analysis. An approximate version of Eq.(3.4) can be used
to predict the steady-state solution changes which occur in response to geometric
shape changes. Such a method is valid as long as the changes in geometric shape
(i.e., design parameter) are small. Figure 5.8 shows the non-linear relation between

drag coefficient and thickness parameter T verifying the above argument.

5.2 NACA 8512 Airfoil Test Case

5.2.1 Grid Sensitivity

The second test case considered is the NACA 8512 cambered airfoil. Again,

the previously obtained grid, as shown in Fig. 4.3, is considered for grid sensitivity
analysis. Figures 5.9 and 5.10 show the y and x-coordinate sensitivity with respect

to parameter T respectively. Their characteristics are similar to the previous sym-



metrical airfoil case; hence, detailed description of their behavior is omitted here.

Figure 5.11 represents the y-coordinate sensitivity with respect to camber,
M. It appears that the highest sensitivity contour levels are located at the chordwise
location of camber, C (i.e., 0.5 of chord length). The contour levels decrease toward
the far-field boundary, again as a consequence of interpolation function. However.
unlike Fig. 5.9 here they possess positive values on both upper and lower surfaces.
Consequently, an increase in camber, M, shifts all the points upward. Again, mini-
mum activity can be detected in the wake region. Figure 5.12 shows the x-coordinate
sensitivity contours with respect to camber, M. Here, as in Fig. 5.10, the sensitivities
are minimum on the surface of the wing-section. There is a small gradient on the
forward section, but by far, the strongest gradient is in the rearward section due to
orthogonality effects.

Figure 5.13 illustrates the y-coordinate sensitivity with respect to camber
location, C. A dividing line between positive and negative contour levels appears
near the chordwise position of the camber. Like previous cases, there is no significant
activity in the wake region. The result indicates that a positive change of C will cause
the movement of points downward on the forward section, while at the same time, the
points on the rear section will respond by moving upward. Figure 5.14 illustrates the
x-coordinate sensitivity with respect to camber location C. The two major features
are attributed to chordwise location of the camber and the orthogonality effects on
the tail section. It is interesting to notice that the sensitivity level for camber location
is considerably less than the other two design parameters.

Similar developments can be extended to other grid control paraméters such
as the distribution of grid point around the wing section and magnitude of orthogo-
nality at the boundaries. For example, the grid sensitivity with respect to stretching
parameter k, using Egs.(4.15-4.17), is obtained and the results are presented on Figs.

5.15 and 5.16.



5.2.2 Flow Sensitivity

Using free stream conditions of M, = 0.8 , Re., = 10% and a = 0°, a
converged flow field solution is obtained. As in previous case, a C-type grid of 141x31
is used. Figures 5.17 and 5.18 illustrate the pressure and Mach number contours.
Figure 5.19 shows the surface pressure coefficient C,, where lift and drag coefficients
are (' = 0.106, and Cp = 0.0738. The aerodynamic sensitivity coefficients with
respect to vector of design parameters Xp, are obtained and presented in Table 5.2.

A comparison with finite difference validates the accuracy of the approach.
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Flig. 5.1 Y-coordinate sensitivity with respect to thickness T (Analytical)

Fig. 5.2 X-coordinate sensitivity with respect to thickness T (Analytical)
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Fig. 5.3 Y-coordinate sensitivity with respect to thickness T (Finite-Difference)
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Fig. 5.5 Pressure contours for NACA 0012 wing-section
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Fig. 5.6 Mach number contours for NACA 0012 wing-section
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Table 5.1 Lift and Drag sensitivities with respect to design parameter T

NACAODI2 Direct Approach Finite Dil[erenacc
' C
Design Paramelers 53%: g% g%lr; -;)?D;
Xp="Thickness —2.68x107% [ 0.709 | —4.75x10-° | 0.707
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Fig. 5.9 Y-coordinate sensitivity with respect to thickness T (Analytical)
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Fig. 5.10 X-coordinate sensitivity with respect to thickness T (Analytical)
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Fig. 5.11 Y-coordinate sensitivity with respect to camber M (Analytical)
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Fig. 5.12 X-coordinate sensitivity with respect to camber M (Analytical)
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Fig. 5.13 Y-coordinate sensitivity with respect to camber location C (Analytical)
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Fig. 5.14 X-coordinate sensitivity with respect to camber location C (Analytical)
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‘Table 5.2 Lift and Drag sensitivities with respect to vector of design
parameters Xp

NACA 8512 Direct Approach Finite Difference
_Hcsign Parameters g% -g% g%; %%ﬂ-
Xp = Thickness -1.058 0.410 -1.058 0.410
Xp = Camber 7.840 0.322 7.838 0.322
X, = Camber location | -8.34x103 | 4.31x10~° | -8.5x10~ -4.3x107°
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6. CONCLUSION

The objective of this study has been to demonstrate an approach for ob-
taining grid sensitivity which can be used in aerodynamic design and optimization.
[t is shown that grid sensitivity is an essential ingredient in the calculation of aero-
dynamic sensitivity. The main supposition is that a grid is defined algebraically in
terms of parameters and computational coordinates. Therefore, coordinates of the
grid and derivatives of the coordinates with respect to the parameters (grid sensi-
tivity) are computed directly as functions of the parameters and uniformly-discrete
values of the computational coordinates. A subset of the parameters defines the shape
of the grid boundaries which corresponds to the aerodynamic surfaces of interest. It
is recommended that the aerodynamic surfaces be parameterized in terms of design
parameters which have global control. As compared to a geometric parameteriza-
tion, this drastically reduces the number of parameters. However, it limits the design
flexibility. In addition to the aerodynamic surface parameters, the sensitivity with
respect to parameters that define other boundaries, such as the far-field boundary or
the spacing of grid points, is available for analysis or grid adaptation.

The algebraic grid-generation scheme and NACA wing sections presented
here are intended to demonstrate the elements involved in obtaining grid sensitivity
from an algebraic grid generation process. It is evident that each grid generation
formulation would require considerable analytical differentiation. This implies that
a symbolic manipulator, which directly produces computer code for derivative eval-

uation, should be considered. Also, there are trade-offs between analytical differen-
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tiation and finite-difference differentiation. It may be feasible to obtain some of the
derivatives by finite differences.

[t is implied that airplane surfaces should be parameterized in terms of de-
sign variables. This is not simple or feasible for geometrically-complex airplanes in
advanced stages of design. However, design parameterization is feasible during con-
ceptional and preliminary design. The parameterization, which is the development
of analytical formulas for part or all of a surface is critical for satisfactory results.
It is always possible to create a geometric parameterization of a surface (collection
of points or derivatives that define surface patches), but geometric parameterizations
have very local sensitivities and a complete aerodynamic surface can require a large
number of parameters for its definition.

As a compromise between totally analytic parameterization of surfaces and
geometric parameterization, a hybrid approach is advocated. In a hybrid approach,
certain sections or skeletal parts of a surface are specified analytically and interpo-
lation formulas are used for the remainder of the surface. This is employed for the

wing example described herein.
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APPENDIX A

FORTRAN LISTING FOR GRID GENERATION
ALGORITHM : HERMITE
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SUBROUTINE HERMITEL (XS, YS, NI, NJ,ALFA, XGRD, YGRD, PROBID, DOBATCH) 33
PARAMETER (NGRID=3)

$INCLUDE tbggl.inc
$INCLUDE tbgg5.inc

DIMENSION XS (NGDIM, *), YS(NGDIM, *), T (NGDIM), XGRD (NGDIM, NGDIM)
, YGRD (NGDIM, NGDIM) , ALFA (NGDIM) , S1 (NGDIM, NGDIM)
, XLEFT (NGDIM) , YLEFT (NGDIM) , XRIGHT (NGDIM) , YRIGHT (NGDIM)
, RI (NGDIM) , RO (NGDIM), R(NGDIM), S (NGDIM), SK(NGDIM)
 X(NGDIM) , Y (NGDIM) , XVIEW (NGDIM, NGDIM) , YVIEW (NGDIM, NGDIM)
COMMON/PQ/PS (MGDIM) , QS (MGDIM) , tS (MGDIM, MGDIM)
COMMON/DXYDETA/DXBDETA (NGDIM) , DYBDETA (NGDIM)
COMMON/JAYS/J1,J2,J3
common/design/cm, p, th, rr, wlength, chord
CHARACTER PROBID* (*),PR(4) *80
SAVE RO, XLEFT, YLEFT, XRIGHT, YRIGHT
LOGICAL REDRAW,DONE, REDIST,DOBATCH, FIRST

> W R

Does basic grid calculations, draws grid, and provides for user

299

(el

99

OO0O0000n

Q

c
C
C modifications in interactive loop.
C
c
c

REDIST = .FALSE.
REDIST = .TRUE.
DONE = .FALSE.
DONE = .TRUE.

......... Magnitude Of Orthogonality Vector
WRITE (*, *)

WRITE (*, *)’ Magnitude of Normal Derivatives ?'
READ (*, *) SKB

DO 299 1 =1, NI
SK(I) = SKB
CONTINUE

CONTINUE

Distribution For Stretching Variable T
Uses Linear Distribution For Initial Trial and Arc-length
Disribution For Final Trial

IF (REDIST.AND. (.NOT.DONE)) THEN
DONE = .TRUE.
IF (DOBATCH) THEN
CALL BATCH(NJ,RO,5)
ELSE
CALL DISTXI(NJ,RO,S)

ENDIF

DO 100 I =1 , NI
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o!

199

102

100

107

39
DO 199 J = 1 , NGDIM
X(J) = XGRD(I,J)
Y(J) = YGRD(I,J)
CONTINUE
CALL ARC(X, Y, R,NGDIM, RMAX)
DO 101 J = 1 , NGDIM

RI(J) = R(J) / RMAX
IF (RI (NGDIM) .NE.1.0)RI(NGDIM)=1.0

CONTINUE
CALL INTERPO(RI,T,NGDIM, RO, S,NJ)

DO 102 J =1, NJ

S1(I,J) = S(J)
tS(I,J) = S1(I,J)
CONTINUE

CONTINUE
ELSEIF ((.NOT.REDIST) .AND. ( .NOT.DONE)) THEN

REDIST = .TRUE.

DO 201 I =1, NI
DO 201 J =1 , NGDIM
T(J) = FLOAT (J-1) /FLOAT (NGDIM-1)
S1(1,J) = T(J)
tS(I,J) = S1(I,J)

CONTINUE

...... Base Line Distribution

ELSEIF (REDIST.AND.DONE) THEN

IF (DOBATCH) THEN
CALL BATCH (NJ,RO, 5)
ELSE
CALL DISTXI(NJ,RO,5)
ENDIF

DO 107 I , NI
DO 107 3 =1, NJ
$1(I,J) = RO(J)
tsS(I,J) = Si(1,J)
CONTINUE
ENDIF

]
[

IF (MGDIM.NE .NGDIM) THEN
WRITE (*, *)’ >>>> tbggl.inc & tbgg5.inc Should Have the
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1 Same Dimension’
STOP
ENDIF
c
c —————————————————————————————————————————————————
o} Hermite Interpolation Function (Eq.3 of manual)
c _________________________________________________
o
SKT = 0.0
C
DO 240 I=1,NI
o
XB = XS(I,1)
YB = YS(I,1)
XT = XS(I,2)
YT = ¥S(I,2)
c
C ... .. ... Orthogonality For Foil
c
IF(I.GE.1.AND.I.LE.J2) THEN
c
DXDETA = - SIN(ALFA(I))
DYDETA = + COS(ALFA(I))
c
ELSEIF(I.GT.J2.AND.I.LE.NI)THEN
c
DXDETA = + SIN(ALFA(I))
DYDETA = - COS(ALFA(I))
o
ENDIF
!
C
DXBDETA (I)=DXDETA
DYBDETA (I)=DYDETA
c
c
IF(I.EQ.J2-4)SK(I) = SKB * 0.85
IF(I.EQ.J2-3)SK(I) = SKB * 0.75
IF (I.EQ.J2-2)SK(I) = SKB * 0.65
IF(I.EQ.J2-1)SK(I) = SKB * (.55
IF(I.EQ.J2) SK(I) = SKB * 0.45
IF(I.EQ.J2+1)SK(I) = SKB * 0.55
IF(I.EQ.J2+2)SK(I) = SKB * 0.65
IF(I.EQ.J2+3)SK(I) = SKB * 0.75
IF(I.EQ.J2+4)SK(I) = SKB * 0.85
c
PS({I) = SK(I)
QS (I) = SKT
c
IF (.NOT.DONE) THEN
o
N=NGDIM
c
ELSE
c
N=NJ
c
ENDIF
c

DO 240 J =1, N
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c

41
CALL BLENDF (S1(I,J),F1,F2,F3,F4)

XGRD (I,J) = XB*F1l + XT*F2 + PS(I) * DXDETA * F3
YGRD(I,J) = YB*F1l + YT*F2 + PS(I) * DYDETA * F3
CONTINUE

IF (.NOT.DONE) GOTO 99

RETURN
END
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GENERATION : NACA
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SUBROUTINE NACA (IS, XS, YS,NLI,ALFA,DOBATCH, CHEAT) 1
$INCLUDE tbggl.inc

PARAMETER (NGRID=3)

DIMENSION XS (NGDIM, 4),YS (NGDIM, 4) ,NLI (4), ALFA(NGDIM)

1 » XOU (NGDIM) , YOU (NGDIM) , XOL (NGDIM) , YOL (NGDIM)
2 + YC (NGDIM) , XCI (NGDIM) , YT (NGDIM) , DYTDXCI (NGDIM)
3 + DYCDXCI (NGDIM) ,ETA (NGDIM)
DIMENSION XI (NGDIM), YI (NGDIM) , XO (NGDIM), YO (NGDIM) , RI (NGDIM)
1 , RO (NGDIM) , ROBAR (NGDIM) , X (NGDIM) , XX (NGDIM)
2 . XU (NGDIM) , YU (NGDIM) , XL (NGDIM) , YL (NGDIM) , XDIST (NGDIM)

COMMON /A/Al,A2,A3,A4,AS

COMMON /DESIGN/CM, P, TH, R, NLENGTH, CHORD

COMMON/ TANGENT /ALFAU (NGDIM) , ALFAL (NGDIM) , DYUDX (NGDIM) , DYLDX (NGDIM) ,NFOIL
COMMON/OLD/XUS (NGDIM) , YUS (NGDIM) , XLS (NGDIM) , YLS (NGDIM)

LOGICAL REDIST(3),DOBATCH, CHEAT

DATA PI,CK/3.14159,7./

>>>> NACA FOUR DIGIT AIRFOIL SECTION <<<<

COMPUTES AN AIRFOIL SECTION ANALITICALLY USING THE
RELATIONS GIVEN IN ’'THEORY OF WING SECTIONS’

WRITTEN BY : IDEEN SADREHAGHIGHI
MECHANICAL ENGINEERING & MECHANICS
OLD DOMINION UNIVERSITY
7-12-1991

--------- INPUT PARAMETERS

QOoOO0O000000000000000000O0

CHORD = 1.0

WRITE (%, *) ' ’
WRITE (%, *) ' >>>>>> AIRFOIL GEOMETRY <<<<<<’
WRITE (*, *) ' '
WRITE (*, *)

WRITE (*, *) ' NUMBER OF POINTS IN XI-DIRECTION?’

READ (*, *) NI

NFOIL=NI

WRITE (*, *) 'NUMBER OF POINTS IN ETA-DIRECTION?’
READ (*, *) NJ

WRITE (*, *) ' OUTER BOUNDARY LOCATION (CHORD LENGTH)?’
READ (*, *)R

R=CHORD*R

YLENGTH=R

PERCENT=CHORD/100 .

TENTH=CHORD/10 .

WRITE (*, *) ' MAXIMUM ORDINATE OF MEAN LINE OR CAMBER (% CHORD) ?’
READ (*, *) CM

CM=CM*PERCENT

WRITE (*, *) ' CHORDWISE POSITION OF CAMBER (./CHORD)?’

READ (*,*) P
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P=P*TENTH +4

WRITE (*, *) ' MAXIMUM THICKNESS OF AIRFOIL ( % CHORD) ?'
READ (*, *) TH
TH=TH*PERCENT

c
C _____________________________________________________________________
C
c AIRFOIL NOMENCLATURE:
Cc
cC ™M L CAMBER
c CAMBER LOCATION ALONG CHORD
Cc TH ............... MAXIMUM THICKNESS
c A .. THICKNESS DISTRIBUTION COEFFICIENTS
C XCr , YC ......... MEAN LINE COORDINATES
c CHORD ............ CHORD LENGTH
C WLENGTH .......... WAKE LENGTH
c
C _____________________________________________________________________
c
c
C === THICKNESS DISTRIBUTION
C
Al1=0.29648
A2=-0.12642
A3=-0.35202
A4=0.28388
A5=-0.10192
c
C
C ... ...... INITIAL DISTRIBUTION IN XI-DIRECTION FOR LOWER BOUNDARY
c

DO 5 I=1,NGDIM
C = FLOAT(I-1) /FLOAT (NGDIM-1)
X(I) = (EXP(CK*C)~1.)/(EXP(CK)-1.)
XCI(I) = X(I) * CHORD
5 CONTINUE

c
C ......... GET INITIAL FOIL (UPPER & LOWER)
C
CALL FOIL(XCI,XUS,YUS,ALFAU,DYUDX,NGDIM,1,C8EAT,999)
CALL FOIL (XCI, XLS, YLS, ALFAL, DYLDX, NGDIM, 2, CHEAT, 999)
c
C ------—-- OUTER BOUNDARY
c
XOUTER = CHORD+R
c
C
C ... INITIAL DISTRIBUTION IN XI-DIRECTION FOR OUTER BOUNDARY
cC
DO 35 I=1,NI
C
C = FLOAT(I-1) /FLOAT (NI-1)
XX(I) = (EXP(C*CK)-1.)/(EXP(CK)-1.)
c
35 CONTINUE
c
DO 36 I=1,NI
XOL(I) = XX(I) * XOUTER
c

XOU(I)=XOL(I)
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IF (XOL(I) .LE.R) THEN 15
YOU (I)=SQRT (R*R- (XOL (I) -R) * (XOL (I) -R) )
YOL (I)=-YOU (I)
ELSE
YOU (I) =YLENGTH
YOL (I)=-YLENGTH

END IF
36 CONTINUE
c
C -—-——=-=-==-- OUTPUT TO HERMITE
c
c NLI (J) = REPRESENTS NUMBER OF POINTS IN EACH BOUNDARY
c =1 ........ SOLID BOUNDARY
C =2 ........ OUTER BOUNDARY
c =3 ..... ... RIGHT BOUNDARY
C =4 ........ LEFT BOUNDARY
C

NLI (1) = NI*2
NLI(2) = NI*2
NLI(3) = NJ
NLI(4) = NJ

C e e BOTTOM BOUNDARY DISTRIBUTION (ARC-LENGTH)

. TRUE

c REDIST (J) .
.FALSE.

REDIST (J)

IF (REDIST(J)) THEN
C . INTERPOLATE UPPER PORTION

CALL ARC(XUS, YUS, RI, NGDIM, RMAX)
IF (DOBATCH) THEN
CALL BATCH (NI, ROBAR, 1)
ELSE
CALL DISTXI (NI, ROBAR, IS)
ENDIF
DO 100 I=1,NI
RO(I) = ROBAR(I) * RMAX
100 CONTINUE
CALL INTERPO (RI, XUS,NGDIM, RO, XDIST,NI)

o
C i GET FINAL FOIL (UPPER)
o]
CALL FOIL(XDIST, XU, YU, ALFAU, DYUDX, NI, 1, CHEAT, 999)
c
C i INTERPOLATE LOWER PORTION
C

CALL ARC (XLS, YLS, RI, NGDIM, RMAX)
IF (DOBATCH) THEN

CALL BATCH (NI, ROBAR, 2)

ELSE

CALL DISTXI (NI, ROBAR, IS)
ENDIF

DO 101 I=1,NI

RO(I) = ROBAR(I) * RMAX
101 CONTINUE
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CALL INTERPO (RI,XLS,NGDIM, RO, XDIST, NI)
............. GET FINAL FOIL (LOWER)
CALL FOIL(XDIST, XL, YL, ALFAL, DYLDX, NI, 2, CHEAT, 999)
ELSE

............... Base Line Distribution

IF (DOBATCH) THEN
CALL BATCH (NI, ROBAR, 1)
ELSE
CALL DISTXI (NI,ROBAR, IS)
ENDIF
CALL FOIL (ROBAR, XU, YU, ALFAU, DYUDX, NI, 1, CHEAT, 999)
IF (DOBATCH) THEN
CALL BATCH (NI, ROBAR, 2)
ELSE
CALL DISTXI (NI, ROBAR, IS)
ENDIF
CALL FOIL (ROBAR, XL, YL, ALFAL,DYLDX, NI, 2, CHEAT, 999)
ENDIF

.......... SHIFT X-COORDINATES TO THE RIGHT FOR C-TYPE GRID
DO 30 I=1,NI

XU(I) = XU(I) + R

XL(I) XL(I) + R

30 CONTINUE

40

................ ASSEMBLE COUNTER-CLOCKWISE
DO 40 I=1,NLI(J)
IF (I.LE.NI) THEN
XS (I,J)=XU(NI-I+1)
YS(I,J)=YU(NI-I+1)
ALFA (I)=ALFAU(NI-I+1)
ALFA (NI)=PI/2.
ELSE
XS (I,J)=XL(I-NI)
¥YS(I,J)=YL(I-NI)
ALFA (I)=ALFAL(I-NI)
END IF
CONTINUE

................ CHECK DOUBLE POINTS FOR BOTTOM BOUNDARY
DO 46 I=1,NLI(J)-1
IF(XS(I,J) .EQ.XS(I+1,J) .AND.YS(I,J) .EQ.YS(I+1,J)) THEN
K=I+1
XS (K, J)=XS (K+1,J)
¥S (K, J)=YS (K+1, J)
ALFA (K) =ALFA (K+1)
IF(I.EQ.NLI(J)-1)NLI(J)=NLI(J)-1
END IF
CONTINUE

----------- OUTER BOUNDARY

46
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103

J=2

REDIST(J) = .TRUE.
DO 45 I=1,NLI(J)
IF(I.LE.NI) THEN
XI (I)=XOU(NI-I+1)
YI(I)=YOU(NI-I+1)
ELSE
XI (I)=XOL(I-NI)
YI(I)=YOL(I-NI)
END IF
CONT INUE

-------- CHECK FOR DOUBLE POINTS (SYMMETRY LINE)

DO 48 I=1,NLI(J)-1
IF(XI(I) .EQ.XI(I+1) .AND.YI(I).EQ.YI(I+1l)) THEN
=I+1
XI (K)=XI (K+1)
YI(K)=YI(K+1)
IF(X1.EQ.NLI(J)-1) NLI(J)=NLI(J)-1
END IF
CONTINUE

IF (REDIST (J)) THEN
CALL ARC(XI, YI,RI,NLI (J), RMAX)
IF (DOBATCH) THEN
CALL BATCH (NLI (J) ,ROBAR, 6)
ELSE
CALL DISTXI(NLI(J),ROBAR, IS)
ENDIF
DO 103 I=1,NLI(J)
RO(I) = ROBAR(I) * RMAX
CONTINUE
CALL INTERPO(RI, XI,NLI(J),RO,XO,NLI(J))
CALL INTERPO (RI, YI,NLI(J),RO,YO,NLI(J))
ENDIF

DO 201 I=1,NLI(J)
IF (REDIST (J) ) THEN
XS(I,J) = XO(I)
YS(I,J) = YO(I)
ELSEIF (.NOT.REDIST (J) ) THEN

XS(I,J) = XI(I)
YS(I,J) = YI(I)
ENDIF
CONTINUE

.... ETA DISTIBUTION

DO 51 J=1, NJ
ETA(J) = FLOAT(J-1) /FLOAT (NJ-1)
CONTINUE

-------- RIGHT BOUNDARY

=3
DO 49 I=1,NJ

XS (I, J) =CHORD+R
YS(I,J)=ETA(I)*R
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49

50

c

(V2]

CONTINUE 1

-------- LEFT BOUNDARY

=4
DO 50 I=1,NJ

XS (I, J)=CHORD+R
YS(I,J)=-ETA(I)*R
CONTINUE

RETURN
END

(32222222828 Rt s it s s s s s s ot s b2z s 2 s s st s ssssy

c

SUBROUTINE FOIL(XCI, X, Y, ANGLE, DYDX, N, II, CHEAT, IGRID)

$INCLUDE tbggl.inc

aO0an

DIMENSION XCI (NGDIM),X(NGDIM),Y (NGDIM), YC (NGDIM), YT (NGDIM), XD (3)
, DYCDXCI (NGDIM) , DYTDXCI (NGDIM) , ANGLE (NGDIM) , DYDX (NGDIM)

COMMON /A/Al1,A2,A3,A4,AS

COMMON /DESIGN/CM, P, TH, R, WLENGTH, CHORD

COMMON /DELTAXD/TH1,CM1,P1, TH3,CM3,P3

LOGICAL CHEAT

DATA PI,CK/3.14159,3./

XD(1) = TH
XD(2) = CM
XD(3) =P
IF (CHEAT) THEN
IF (IGRID.EQ.1) THEN
XD(1l) = TH1
XD(2) = M1
XD(3) = Pl
ELSEIF (IGRID.EQ. 3) THEN
XD (1) = TH3
XD(2) = M3
XD(3) = P3
ENDIF
ENDIF

DO 10 I=1,N
IF(XD(3) .NE.0.0.AND.XCI(I).LE.XD(3)) THEN

YC(I)=(XD(2)/(XD(3)*XD(3))) *(2.*XD(3) *XCI(I)~-XCI(I)*XCI(I))
DYCDXCI(I)=(XD(2)/(XD(3)*XD(3)))*(2.*XD(3)-2.*XCI(I))

ELSEIF (XD (3) .NE.0.0.AND.XCI(I).GT.XD(3))THEN

YC(I)=(XD(2)/((1.-XD(3))*(1.-XD(3))))*
(1.-2.*XD(3)+2.*XD (3) *XCI(I)-XCI(I)*XCI(I))

DYCDXCI(I)=(XD(2)/((1.-XD(3))*(1.-XD(3))))*(2.*XD(3)-2.*XCI(I))

ELSEIF (XD (3) .EQ.0.0) THEN

YC(I)=0.0
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DYCDXCI(I) = 0.0 49
Cc
END IF
10 CONTINUE
c
c
DO 15 I=1,N
c
IF(XCI(I).LE.CHORD) THEN
c
YT (I)=(XD(1)/0.2)*
1 {(A1*SQRT (XCI(I))+A2*XCI (XI)+A3*XCI (I)*XCI(I)
2 +A4*XCI(I) *XCI(I)*XCI(I)+AS*XCI(I)*XCI(TI)*XCI(I)*XCI(I))
C
DYTDXCI (I)=(XD(1)/0.2)* (A1*(0.5/SQRT (XCI(I)))+A2+2.*A3*XCI(I)
1 +3 . *A4*XCI(I)*XCI(I)+4.*A5*XCI(I)*XCI(I)*XCI(I))
c
ELSE
c
YT(1)=0.0
DYTDXCI(I) =0.0
C
END IF
15 CONTINUE
c
c
C --—-——--—- SURFACE COORDINATES (EQS. §5,6)
c
DO 25 I =1,N
-C
X(I) = XCI(I)
IF(II.EQ.1l) THEN
Y(I) = YC(I) + YT(I)
DYDX(I) = DYCDXCI(I) + DYTDXCI(I)
ANGLE (I) = ATAN(DYDX(I))
ANGLE (1) = PI/2
ELSEIF (II.EQ.2) THEN
Y(I) = YC(I) - YT(I)
DYDX(I) = DYCDXCI(I) - DYTDXCI(I)
ANGLE (I) = ATAN(DYDX(I))
ANGLE (1) = PI/2
ELSE
WRITE (*, *)’ Trouble in FOIL’
STOP
ENDIF
Cc
25 CONTINUE
c
RETURN

END



APPENDIX C

FORTRAN LISTING OF NACA FOUR-DIGIT GRID
' SENSITIVITY : SENSIT

50
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SUBROUTINE DXYDXYD (XX, YY,NI,NJ, ICUR, FLAG, ISENS, SRAN)
PARAMETER (ICHOICE=8)

S$INCLUDE tbggl.inc

SINCLUDE tbgg5.inc
DIMENSION XX (NGDIM, NGDIM), YY (NGDIM, NGDIM)
COMMON/XYDXYD/ DXDTEF 'NGDIM, NGDIM) , DYDTH (NGDIM,NGDIM),

1 DXDCY. .iGDIM, NGDIM) , DYDCM (NGDIM, NGDIM),
2 DXDP (NGDIM, NGDIM) , DYDP (NGDIM, NGDIM)

COMMON /DXYBDES/DXBDCM (NGDIM) , DYBDCM (NGDIM) , DXBDTH (NGDIM),
1 DYBDTH (NGDIM) , DXBDP (NGDIM) , DYBDP (NGDIM) , DXBEDTH (NGDIM),
2 DYBEDTH (NGDIM) , DXBEDCM (NGDIM) , DYBEDCM (NGDIM) , DXBEDP (NGDIM) ,
3 DYBEDP (NGDIM)

COMMON/PQ/P (MGDIM) , Q (MGDIM) , T (MGDIM, MGDIM)
COMMON/JAYS/J1,J2,J3
LOGICAL FLAG (ICHOICE)

c
C
c
c
C ___________________________________________________
C GRID SENSITIVITY WITH RESPECT TO DESIGN VARIABLES
c
Cc WRITTEN BY : IDEEN SADREHAGHIGHI
c ———————————————————————————————————————————————————
C
C o e Get Bottom Boundary Sensitivity
c
CALL DXYBDD (XX, YY, NI,NJ, ICUR, SRAN, CHEAT)
C
C ....... Sensitivity Without Arc-length Distribution For Normal Direction
c
DO 10 J =1, NJ
C
DO 10 I = 1 , NI
c
CALL BLENDF (T(I,J),ALFAl, ALFA2, ALFA3, ALFA4)
c
C
DXDTH(I,J) = ALFAl * DXBDTH(I) + P(I) * ALFA3 * DXBEDTH(I)
DYDTH(I,J) = ALFAl * DYBDTH(I) + P(I) * ALFA3 * DYBEDTH(I)
DXDCM(I,J) = ALFAl * DXBDCM(I) + P(I) * ALFA3 * DXBEDCM(I)
DYDCM(I,J) = ALFAl * DYBDCM(I) + P{(I) * ALFA3 * DYBEDCM(I)
DXDP (I,J) = ALFAl * DXBDP(I) + P(I) * ALFA3 * DXBEDP( I)
DYDP (I,J) = ALFAl * DYBDP(I) + P(I) * ALFA3 * DYBEDP( I)
C
10 CONTINUE
Cc
FLAG(ISENS) = .TRUE.
C
RETURN
END
C

ChRAXRARKRAKARRRRANKRAR AR KA AR KRR AR R RN A AR KRN ARRRRRRRRARRRRRRRNAR AR AR AR AR

C
SUBROUTINE DXYBDD (XX, YY, NI, NJ, ICUR, SRAN, CHEAT)
PARAMETER (ICHOICE=8)

SINCLUDE tbggl.inc
DIMENSION XX (NGDIM, NGDIM), YY (NGDIM,NGDIM),
1 DXBUDTH(NGDIM),DXBUDCM(NGHIM),DXBUDP(NGDIM),
2 DYBUDTH(NGDIM),DYBUDCM(NGDIM),DYBUDP(NGDIM),

51
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oooon0o000Q0000000n0o000n
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o000 0n

DXBLDTH (NGDIM) , DXBLDCM (NGDIM) , DXBLDP (NGDIM) ,
DYBLDTH (NGDIM) , DYBLDCM (NGDIM) , DYBLDP (NGDIM),
DXUEDTH (NGDIM) , DXUEDCM (NGDIM) , DXUEDP (NGDIM) ,
DYUEDTH (NGDIM) , DYUEDCM (NGDIM) , DYUEDP (NGDIM),
DXLEDTH (NGDIM) , DXLEDCM (NGDIM) , DXLEDP (NGDIM) ,
DYLEDTH (NGDIM) , DYLEDCM (NGDIM) , DYLEDP (NGDIM),
XU (NGDIM) , XL (NGDIM) , YU (NGDIM) , YL (NGDIM)
COMMON /DXYBDES/DXBDCM (NGDIM) , DYBDCM (NGDIM) , DXBDTH (NGDIM),
DYBDTH (NGDIM) , DXBDP (NGDIM) , DYBDP (NGDIM) , DXBEDTH (NGDIM),
DYBEDTH (NGDIM) , DXBEDCM (NGDIM) , DYBEDCM (NGDIM) , DXBEDP (NGDIM)
3 DYBEDP (NGDIM)
COMMON/JAYS/J1,J2,J3

W oo Jdou & Ww

N =

COMMON/TANGENT/ THETAU (NGDIM) , THETAL (NGDIM) , DYUDX (NGDIM) , DYLDX (NGDIM) , NFOIL

COMMON /A/Al,R2,A3,A4,AS

COMMON /DESIGN/CM,P, TH, R, WLENGTH, CHORD

COMMON /TEMP1/XNEW (NGDIM) , YNEW (NGDIM) , RNEW (NGDIM)
LOGICAL CHEAT

COMPUTES ANALITICALLY THE DERIVATIVE OF BOUNDARY COORDINATES
WITH RESPECT TO DESIGN VARIABLES DXB/DXD

<<< DESIGN VARIBLES >>>

M ... CAMBER
P ........ LOCATION OF CAMBER
TH ....... MAX. THICKNESS

IUPPER = J2

ILOWER = NI - J2 + 1

IF (IUPPER.NE. ILOWER) THEN
WRITE(*,*)’ ERROR FROM DXYBDD'’
STOP

ENDIF

DO 1 I =1 , IUPPER
XU(I) = XX(J2-I+1,1) - R
YU(I) = YY(J2-I+1,1)

CONTINUE

DO 2 I =1, ILOWER
XL(I) XX(I1+J2-1,1) - R
YL(I) = YY(I+J2-1,1)
CONTINUE
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c
IDUMMY = J2 - J1
DO 16 I = 1,IUPPER
c
IF(I.LE.IDUMMY) THEN
c
C ——mmmmmm—mm———— e eem CAMBERED AIRFOIL --==-m=m=--—mmee—————————
o
o J FORWARD OF MAX. CAMBER
c
IF(P.NE.O.0.AND.XU(I).LE.P) THEN
c
YC = (CM/(P*P))*(2.*P*XU(I)-XU(I)*XU(I))
DYCDCM = (1./(P*P))*(2.*P*XU(I)-XU(I)*XU(I))
DYCDP = (2.*CM/(P*P))*(-XU(I)+XU(I)*XU(I)/P)
D2YCDCM= (1./(P*P))*(2.*P-2 . *XU(I))
D2YCDP = (2.*CM/ (P*P)) *(2.*XU(I)/P-1.)
c
ELSEIF(P.NE.0.0 .AND.XU(I).GT.P) THEN
c
o AFT OF MAX. CAMBER
c .
YC = (CM/((1.-P)*(1.-P)))*(1.-2.%P+2 *P*XU(I)~
XU (I)*XU(I))
DYCDCM = (1./((1.-P)*(1.-P)))*(1.-2. *%P+2 *P*XU(I)
-XU (I)*XU(I))
FACTOR1l = CM/((1.-P)*(1.-P))
FACTOR2 = 2./(1.-P)
FACTOR3 = 1.-2.#%P+42.*P*XU(I)-XU(I)*XU(I)
DYCDP = FACTOR1 * (FACTOR2 * FACTOR3 - 2. + 2.*XU(I))
D2YCDCM= (1./((1.-P)*(1.-P)))*(2.%*P-2 . *XU(I))
D2YCDP = (2.*CM/((1.-P)*(1.-P)))*(2.*((P-XU(I))/(1.-P))+1.)
c
ELSEIF(CM.EQ.0.0.AND.P.EQ.0.0) THEN
c
C = SYMMETRICAL AIRFOIL ---—-—--——--—ccememceme e m
c
YC = 0.0
DYCDCM = 0.0
DYCDP = 0.0
D2YCDCM= 0.0
D2YCDP = 0.0
c
ENDIF
c
c
D2YTDTH = (1./0.2)*(0.5*A1/SQRT (XU (I))+A2
+2.*A3*XU (I) +3. *A4*XU (I) *XU (I) +4. *A5*XU (I) *XU (I) *XU (1))
c
FACTOR = Al1*SQRT (XU (I))+A2*XU(I)+A3*XU(I)*XU(I)
+A4ANU(I) *XU(I) *XU (I) +AS*XU(I) *XU (I} *XU(I) *XU(I)
C
YT = (TH/0.2) *FACTOR
c
DYDTH = YT/TH
DYBUDTH(I) = DYDTH
DYBUDCM(I) = DYCDCM
DYBUDP (I) = DYCDP
c

33
C e EVALUATING DXETA/DTH , DYETA/DTH
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.........

.........

........

TIMESU = COS(THETAU(I))/(1.+(DYUDX(I)*DYUDX(I)))
DXUEDTH (I) = + D2YTDTH * - TIMESU
TIMESU = SIN(THETAU(I))/ (1.+(DYUDX(I)*DYUDX(I)))
DYUEDTH (I) = + D2YTDTH * - TIMESU

..... EVALUATING DXETA/DCM , DYETA/DCM

TIMESU = COS (THETAU(I))/(1l.+(DYUDX(I)*DYUDX(I)))
DXUEDCM(I) = + D2YCDCM * - TIMESU
TIMESU = SIN(THETAU(I))/(1.+(DYUDX(I)*DYUDX(I)))
DYUEDCM(I) = + D2YCDCM * - TIMESU

EVALUATING DXETA/DP , DYETA/DP

TIMESU = COS{THETAU(I))/(1.+(DYUDX(I)*DYUDX(I)))
DXUEDP (I) = + D2YCDP * - TIMESU
TIMESU = SIN(THETAU(I))/(1.+(DYUDX{(I)*DYUDX(I)))
DYUEDP (I) = + D2YCDP * - TIMESU

...... Singularity At Nose .... Slope dy/dx = Infinite

IF(I.EQ.1) THEN

DXUEDTH(I) = 0.0
DYUEDTH(I) = 0.0
DXUEDCM(I) = 0.0
DYUEDCM(I) = 0.0
DXUEDP (I) = 0.0
DYUEDP (I) = 0.0
ENDIF
ELSE

SET BOUNDARY SENSITIVITY DERIVATIVES TO ZERO IN WAKE REGION

DXBUDCM(I) = 0.0
DYBUDCM(I) = 0.0
DXBUDP (I) = 0.0
DYBUDP (I) = 0.0
DXBUDTH(I) = 0.0
DYBUDTH(I) = 0.0
DXUEDTH(I) = 0.0
DYUEDTH(I) = 0.0
DXUEDCM(I) = 0.0
DYUEDCM(I) = 0.0
DXUEDP (I) = 0.0
DYUEDP (I) = 0.0

ENDIF

CONTINUE

IL=J2 - J1 +1

.........

GET X-BOUNDARY COORDINATE SENSITIVITY FOR UPPER WAKE REGION
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cC ... DXB/DXD = DXB/DR * DR/DXD .........
c
CALL DXBDXD (1, IL, XU, YU, DXBUDCM, DXBUDTH, DXBUDP, CHEAT)
c
IDUMMY = J3 - J2
DO 17 I = 1,ILOWER
C
IF (I.LE.IDUMMY) THEN
c
B e R CAMBERED AIRFOIL ---=-——-ememmmeme e e e m
c
o FORWARD OF MAX. CAMBER
c
IF(P.NE.0.0.AND.XL(I) .LE.P) THEN
YC = (CM/(P*P))*(2.*P*XL(I)-XL(I)*XL(I))
DYCDCM = (1./(P*P))*(2.*P*XL(I)-XL(I)*XL(I))
DYCDP = (2.*CM/ (P*P))* (-XL(I)+XL(I)*XL(I)/P)
D2YCDCM= (1./(P*P)) * (2. *P-2 *XL(I))
D2YCDP = (2.*CM/ (P*P))*(2.*XL(I)/P-1.)
c
ELSEIF(P.NE.0.0.AND .XL(I) .GT.P) THEN
c .
o AFT OF MAX. CAMBER
c
YC = (CM/((1.-P)*(1.-P)))*(1.~-2.*%P+2 . *P*XL (I)-
XL(I)*XL(I))
DYCDCM = (1./((1.-P)*(1.-P)))*(1.-2. %P+2 *P*XL(I)
=XL(I)*XL(I))
FACTOR1 = CM/((1.-P)*(1.-P))
FACTOR2 = 2./(1.-P)
FACTOR3 = 1.-2.*%P+2.*P*XL(I)-XL(I)*XL(I)
DYCDP = FACTOR1 * (FACTOR2 * FACTOR3 - 2. + 2.*XL(I))
D2YCDCM= (1./((1.-P)*(1.-P)))*(2.*P-2.*XL(I))
D2YCDP = (2.*CM/ ((1.-P)*{(1.-P)))*(2.*((P-XL(I))/(1.-P))+1l.)
c
ELSEIF(CM.EQ.0.0.AND.P .EQ.0.0) THEN
c
C ————mmmmmmmme e SYMMETRICAL AIRFOIL -—------me e eee e e
c
YC = 0.0
DYCDCM = 0.0
DYCDP = 0.0
D2YCDCM= 0.0
D2YCpP = 0.0
c
ENDIF
c
C
D2YTDTH = (1./0.2)*(0.5*%A1/SQRT (XL (I))+A2
+2 . *A3*XL (I)+3. *A4*XL (I) *XL(I)+4 . *AS5*XL (I) *XL(I) *XL(I))
C
FACTOR = Al1*SQRT (XL (I))+A2*XL(I)+A3*XL (I)*XL(I)
+A4*XL (I) *XL(I) *XL (I) +AS*XL (I) *XL(I) *XL (I) *XL(I)
o}
YT = (TH/0.2)*FACTOR
c
DYDTH = YT/TH
DYBLDTH(I) = - DYDTH
DYBILDCM(I) = DYCDCM 55
DYBLDP(I) = DYCDP
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c
C e EVALUATING DXETA/DTH , DYETA/DTH
c
C
TIMESL = COS (THETAL(I))/(1.+(DYLDX(I)*DYLDX(I)))
DXLEDTH(I) = - D2YTDTH * + TIMESL
C
TIMESL = SIN(THETAL(I))/(1.+(DYLDX(I)*DYLDX(I)))
DYLEDTH(I) = - D2YTDTH * + TIMESL
c
C o EVALUATING DXETA/DCM , DYETA/DCM
od
TIMESL = COS(THETAL(I))/(1.+(DYLDX(I)*DYLDX(I)))
DXLEDCM(I) = + D2YCDCM * + TIMESL
c
TIMESL = SIN(THETAL(I))/(1.+(DYLDX(I)*DYLDX(I)))
DYLEDCM(I) = + D2YCDCM * + TIMESL
C
C . e EVALUATING DXETA/DP , DYETA/DP
C
TIMESL = COS(THETAL(I))/(1.+(DYLDX(I)*DYLDX(I)))
DXLEDP (I) = + D2YCDP * + TIMESL
c
TIMESL = SIN(THETAL(I))/(1.+(DYLDX(I)*DYLDX(I)))
DYLEDP (I) = + D2YCDP * + TIMESL
c
C e e Singularity At Nose .... Slope dy/dx = Infinite
o
IF(I.EQ.1) THEN
DXLEDTH(I) = 0.0
DYLEDTH(I) = 0.0
DXLEDCM(I) = 0.0
DYLEDCM(I) = 0.0
DXLEDP (I) = 0.0
DYLEDP (I) = 0.0
ENDIF
Cc
ELSE
Cc
C ... . ... SET SENSITIVITY DERIVATIVES TO ZERO IN WAKE REGION
C
DXBLDCM(I) = 0.0
DYBLDCM(I) = 0.0
DXBLDP (I) = 0.0
DYBLDP (I) = 0.0
DXBLDTH(I) = 0.0
DYBLDTH(I) = 0.0
DXLEDTH(I) = 0.0
DYLEDTH(I) = 0.0
DXLEDCM(I) = 0.0
DYLEDCM(I) = 0.0
DXLEDP (I) = 0.0
DYLEDP (I) = 0.0
C
ENDIF
C
17 CONTINUE
c
C ......... GET X-BOUNDARY COORDINATE SENJITIVITY FOR LOWER WAKE REGION

c .. DXB/DXD = DXB/DR * DR/DXD .........
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c
CALL DXBDXD (2, IL, XL, YL, DXBLDCM, DXBLDTH, DXBLDP, CHEAT)
c
DO 50 I = 1, IUPPER
c
DXBDTH (IUPPER - I + 1) = DXBUDTH(I)
DYBDTH (IUPPER - I + 1) = DYBUDTH(I)
DXBDCM (IUPPER - I + 1) = DXBUDCM(I)
DYBDCM (IUPPER - I + 1) = DYBUDCM(I)
DXBDP (IUPPER - I + 1) = DXBUDP (I)
DYBDP (IUPPER - I + 1) = DYBUDP (I)
DXBEDTH (IUPPER- I + 1) = DXUEDTH(I)
DYBEDTH (IUPPER- I + 1) = DYUEDTH(I)
DXBEDCM (IUPPER- I + 1) = DXUEDCM(I)
DYBEDCM (IUPPER- I + 1) = DYUEDCM(I)
DXBEDP (IUPPER - I + 1) = DXUEDP (I)
DYBEDP (IUPPER - I + 1) = DYUEDP (I)
c
50 CONTINUE
c
DO 60 I = 1, ILOWER
c
DXBDTH (IUPPER - 1 + I) = DXBLDTH(I)
DYBDTH (IUPPER - 1 + I) = DYBLDTH(I)
DXBDCM (IUPPER - 1 + I) = DXBLDCM(I)
DYBDCM (IUPPER - 1 + I) = DYBLDCM(I)
DXBDP (IUPPER - 1 + I) = DXBLDP (I)
DYBDP (IUPPER - 1 + I) = DYBLDP (I)
DXBEDTH (IUPPER- 1 + I) = DXLEDTH(I)
DYBEDTH (IUPPER- 1 + I) = DYLEDTH(I)
DXBEDCM (IUPPER- 1 + I) = DXLEDCM(I)
DYBEDCM (IUPPER- 1 + I) = DYLEDCM(I)
DXBEDP (IUPPER - 1 + I) = DXLEDP (I)
DYBEDP (IUPPER - 1 + I) = DYLEDP (I)
c
60 CONTINUE
c
RETURN
END
c

ChAARAAKRRRRANRRRRRRRRARNRRAARNRRRRNANAARARRNARARRARRNANRRARARRAAR A AR XA XAk k K

c
SUBROUTINE DXBDXD (II,IL,XNEW, YNEW, DXBDCM, DXBDTH, DXBDP, CHEAT)

$INCLUDE tbggl.inc

DIMENSION XNEW (NGDIM) , YNEW (NGDIM) , DXBDCM (NGDIM) , DXBDTH (NGDIM)

, DXBDP (NGDIM) , ROLD (NGDIM) , RNEW (NGDIM) , XOLD (NGDIM)

, YOLD (NGDIM) , DYDTH (NGDIM) , DYDCM (NGDIM) , DYDP (NGDIM)

, DRDCM (NGDIM) , DRDTH (NGDIM) , DRDP (NGDIM) , DRDCMN (NGDIM)

, DRDTHN (NGDIM) , DRDPN (NGDIM)
COMMON/OLD/XUS (NGDIM) , YUS (NGDIM) , XLS (NGDIM) , YLS (NGDIM)
COMMON/TANGENT/THETAU (NGDIM) , THETAL (NGDIM) , DYUDX (NGDIM) ,DYLDX (NGDIM) ,NFOIL
COMMON/A/Al,A2,A3,A4,AS
COMMON /DESIGN/CM, P, TH, R, WLENGTH, CHORD
COMMON /DELTAXD/TH1l,CM1,P1l,TH3,CM3,P3
COMMON/DUMMY /X (NGDIM) , Y (NGDIM) , X1 (NGDIM), X3 (NGDIM), RO (NGDIM),b RI (NGDIM),

1 XDIST (NGDIM) , DUM1 (NGDIM) , DUM2 (NGDIM) , XCI (NGDIM) , ROBAR (NGDIM)
LOGICAL CHEAT
DATA CK,DELTA/4.0,0.0001/

c 37

s WP
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c
goto 999
DO 10 I = 1 , NGDIM
c
IF(II.EQ.1) THEN
C
XOLD (I)=XUS (I)
YOLD (I)=YUS (I)
C
ELSE
c
XOLD (I)=XLS (I)
YOLD (I)=YLS (I)
C
ENDIF
c
10 CONTINUE
o!
c
C
DO 15 I = 1,NGDIM
C .
IF (XOLD (I) .LE.CHORD) THEN
c
C - CAMBERED AIRFOIL -------—=c=—ocommemeee
c
C it e e e FORWARD OF MAX. CAMBER
c
IF(P.NE.0.0.AND.XOLD(I) .LE.P) THEN
YC = (CM/(P*P))*(2.*P*XOLD (I)-XOLD (I)*XOLD(I))
DYCDCM = (1./(P*P)) *(2.*P*XOLD (I)-XOLD (I) *XOLD (I))
DYCDP = (2.%*CM/ (P*P))* (-XOLD (I)+XOLD(I)*XOLD(I)/P)
C
ELSEIF(P.NE.O.0.AND.XOLD (I).GT.P) THEN
C
C o e AFT OF MAX. CAMBER
c
YC = (CM/((1.-P)*(1.-P)))*(1.-2.%P42. *P*XOLD (I) -
XOLD (I) *XOLD (I))
DYCDCM = (1./((1.-P)*(1.-P)))*(1.-2.%P+2, *P*XOLD (I)
~XOLD (I) *XOLD (I))
FACTOR1 = CM/ ((1.-P)*(1.-P))
FACTOR2 = 2./ (1.-P)
FACTOR3 = 1.-2.%*P+2 *P*XOLD (I)-XOLD (I)*XOLD (I)
DYCDP = FACTOR1 * (FACTOR2 * FACTOR3 - 2. + 2.*XOLD(I))
C
ELSEIF(CM.EQ.0.0.AND.P.EQ.0.0) THEN
C
C ~mm—mmmemrmmm e SYMMETRICAL AIRFOIL -—------———ccccmmmeeaaa—
c
YC = 0.0
DYCDCM = 0.0
DYCDP = 0.0
o
ENDIF
c
ELSE
C
WRITE (*, *) ERROR FROM DXBDXJR. . ... XOLD IS OUT OF DOMAIN'

STOP
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c
ENDIF
c
o]
FACTOR = A1*SQRT (XOLD (I))+A2*XOLD (I)+A3*XOLD (I)*XOLD (I)
+A4*XOLD (I) *XOLD (I) *XOLD (I)+A5*XOLD (I) *XOLD (I) *XOLD (I) *XOLD (I)
c
YT = (TH/0.2)*FACTOR
C
IF (II.EQ.2)YT=-YT
c
DYDTH(I) = YT/TH
DYDCM(I) = DYCDCM
DYDP (I) = DYCDP
c
15 CONTINUE
c
c
CALL ARC (XOLD, YOLD, ROLD, NGDIM, RMAX)
CALL ARC (XNEW, YNEW,RNEW, IL , RMAX)
c
c
DRDCM(1)=0.0
DRDTH (1)=0.0
DRDP (1)=0.0
c
DO 20 I = 2 , NGDIM
c
FACTOR = (YOLD(I) - YOLD(I-1))/{(ROLD(I)-ROLD(I-1))
c
DRDCM(I) = FACTOR * (DYDCM(I)-DYDCM(I-1)) + DRDCM(I-1)
DRDTH(I) = FACTOR * (DYDTH(I)-DYDTH(I-1)) + DRDTH(I-1)
DRDP (I) = FACTOR * (DYDP (I)-DYDP (I-1)) + DRDP (I-1)
c
20 CONTINUE
c
c
CALL INTERPO (ROLD,DRDCM, NGDIM, RNEW, DRDCMN, IL)
CALL INTERPO (ROLD,DRDTH, NGDIM, RNEW, DRDTHN, IL)
CALL INTERPO (ROLD,DRDP , NGDIM, RNEW, DRDPN , IL)
c
c
DO 25 I =1, IL
c
IF(I.EQ.1) THEN
DXBDR = (XNEW(I+1)-XNEW(I))/ (RNEW(I+1)~RNEW(I))
ELSEIF (I.EQ.IL)THEN
DXBDR = (XNEW(I)-XNEW(I-1))/(RNEW(I)-RNEW(I-1))
ELSE
c
DXBDR = (XNEW(I+1l)-XNEW(I-1))/(RNEW(I+1)-RNEW(I-1))
c
ENDIF
c

IF (II.EQ.1)DYDX=DYUDX (I)

IF (II.EQ.2)DYDX=DYLDX(I)
FACTOR=SQRT (1. + DYDX*DYDX)
DXBDR=1 . /FACTOR

c 59
DXBDCM(I) = DXBDR * DRDCMN(I)
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DXBDTH (I) DXBDR * DRDTHN(I)
DXBDP (I) = DXBDR * DRDPN (I)

25 CONTINUE

999 CONTINUE
goto 1099
IF (CHEAT) THEN

TH1 = TH + DELTA
TH3 = TH - DELTA
IF(CM.NE.0.0) THEN
CMl = CM + DELTA
cM3 = CM DELTA
ELSE

CM1=0.0

CM3=0.0

ENDIF
IF(P.NE.0.0) THEN
Pl =P + DELTA
P3 =P - DELTA
ELSE

P1=0.0

P3=0.0

ENDIF

IGRID =1
1000 CONTINUE

DO 35 I=1,NGDIM

C = FLOAT(I-1) /FLOAT (NGDIM-1)
XCI(I) = ((EXP(CK*C)-1.)/(EXP(CK)-1.))*CHORD

35 CONTINUE

CALL FOIL(XCI,X,Y,DUM1,DUM2,NGDIM, IT, CHEAT, IGRID)
CALL ARC (X, Y,RI,NGDIM, RMAX)
CALL BATCH(IL,ROBAR, 1)

DO 45 I=1,IL
RO {I)=ROBAR (I) *RMAX
45 CONTINUE

CALL INTERPO (RI, X, NGDIM, RO, XDIST, IL)
CALL FOIL(XDIST,X,Y,DUM1,DUMZ2, IL, II,CHEAT, IGRID)

IF (IGRID.EQ.1) THEN
DO 65 I=1,1IL
X1(I) = X(I)
65 CONTINUE
IGRID = 3
GOTO 1000
ELSEIF (IGRID.EQ. 3) THEN
DO 85 I=1,IL
X3(I) = X(I)
85 CONTINUE
ENDIF

c 60
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C .. Finite Differencing

DELTATH = TH1 - TH3
DELTACH = CM1 - CM3
DELTAP = P1 - P3

DO 75 I=1,IL
DXBDTH(I) = (X1(I) - X3(I))/(TH1 - TH3)
IF (DELTACM.NE.0.0) THEN
DXBDCM(I) = (X1(I) -X3(I))/(CM1 - CM3)
ELSE
DXBDCM(I) = 0.0
ENDIF
IF (DELTAP .NE.(Q.0) THEN
DXBDP (I) = (X1(I) - X3(I))/(P1 - P3)
ELSE
DXBDP(I) = 0.0
ENDIF
75 CONTINUE
c
ENDIF
(o]
1099 continue
do 2000 I=1,IL
DXBDTH(I) = 0.0
DXBDCM(I) = 0.0
DXBDP (I) = 0.0
2000 CONTINUR
RETURN
END

61






